

Subscale Test Methods for Combustion Devices

Fifth International Symposium on Liquid Space Propulsion 28-30 October 2003 Chattanooga TN

W.E. Anderson, J.C. Sisco, M.R. Long, and I.-K. Sung School of Aeronautics and Astronautics Purdue University

Outline

- Motivation for Scaled Experiments
- Brief Scaling History
 - Steady-State Combustion
 - Combustion Stability
 - Life Prediction
- Scaling Approaches Presently Used at Purdue

Background

- Stated goals for long-life LRE's have been between 100 and 500 cycles
 - Inherent technical difficulty of accurately defining the transient and steady state thermochemical environments and structural response (strain)
 - Limited statistical basis on failure mechanisms and effects of design and operational variability
 - Very high test costs and budget-driven need to protect test hardware (aversion to test-to-failure)
- Ambitious goals will require development of new databases
 - Advanced materials, e.g., tailored composites with virtually unlimited property variations
 - Innovative functional designs to exploit full capabilities of advanced materials
 - Different cycles/operations
- Subscale testing is one way to address technical and budget challenges
 - Prototype subscale combustors exposed to controlled simulated conditions
 - Complementary to conventional laboratory specimen database development
 - Instrumented with sensors to measure thermostructural response
 - Coupled with analysis

SSME Film Cooling Analysis

• Configuration

- Propellant = LOX + LH2 with O/F = 6.02
- M_dot_LOX = 64,000 liter/min
- M_dot_LH2 = 178,000 liter/min
- M_dot_coolant for regen cooling = 29.06 lb/sec

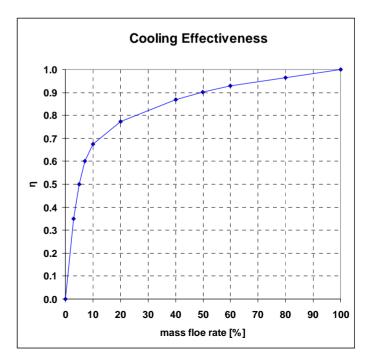
Chamber condition

- Pc = 3300 psi
- Tc = 3500 K (5840 F)
- D throat = 10.88"
- E = 77

Cooling channel

- Wall thickness = 0.03"
- Width = 0.04 "
- Height = 0.12 "
- Pressure_throat = 3851 psi

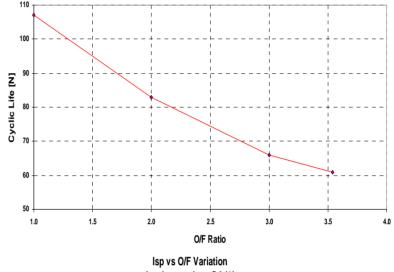
• Thermal condition at throat

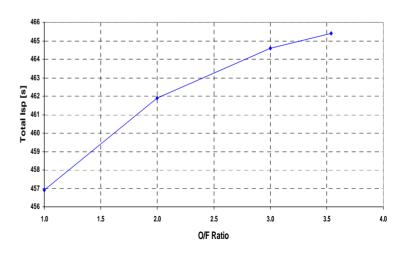

- Heat flux = $80 \text{ Btu/in}^2-\text{s}$
- $hg = 58000 \text{ W/m}^2\text{-K}$
- Twg = 1100 F

• Wall adiabatic temperature

Current near wall O/F ratio

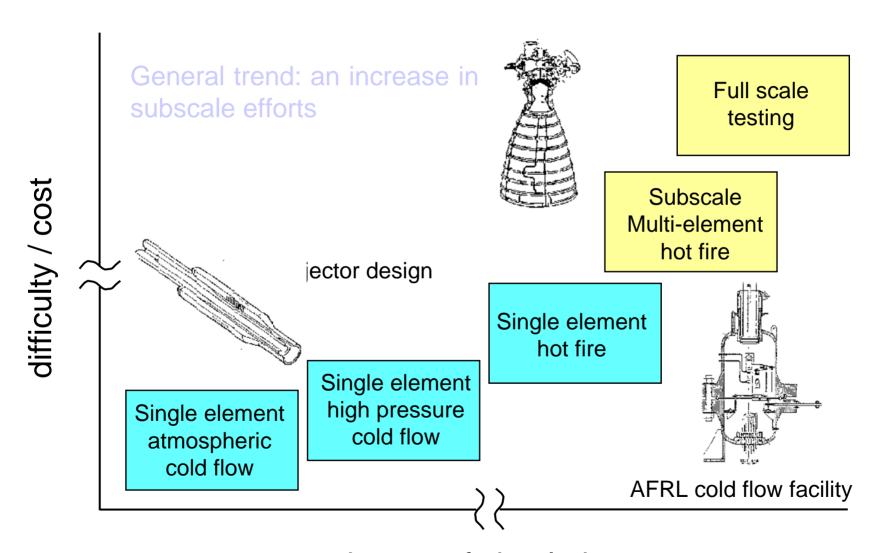
 $- q_dot = hg(Taw-Twg)$ $Where q_dot = 80 Btu/in^2-s$ $hg = 58000 W/m^2-K$ Twg = 1100 F


- → Taw = 3125 K
 - $\eta = 0.5$
- $\rightarrow \text{Tco} = 2750 \text{ K}$
- → O/F_nw = 3.54 from Flame temperature vs O/F ratio chart


SSME Film Cooling Analysis

SSME O/F vs Life

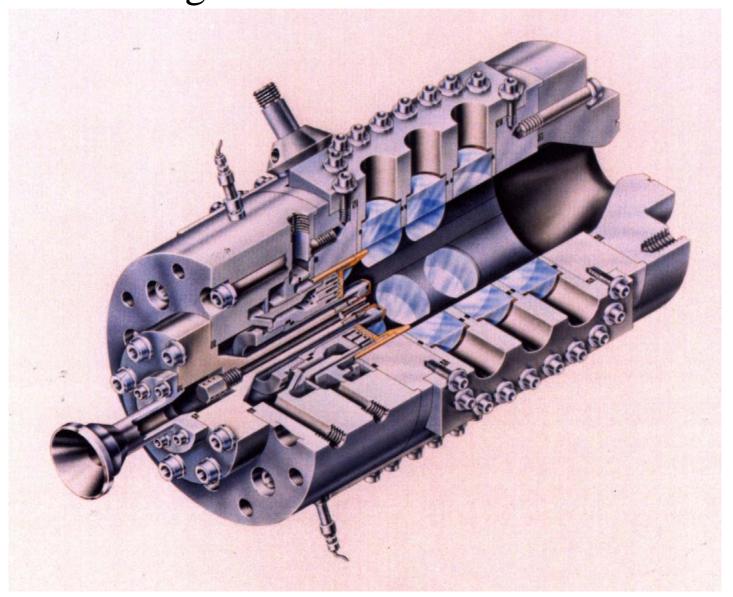
- Current film cooling condition
 - $O/F_nw = 3.54$
- Parametric study with fixed film flow rate (5 %)
 - *Porowski et al. method (AIAA Journal Vol. 2 No. 2, 1985)
 - O/F_nw change = $3.54 \rightarrow$ 1.0
 - Life change = $61 \rightarrow 107$ (75.4% increase)
 - Isp change = $465 \rightarrow 457$ (1.83 % decrease)


(coolant m dot = 5.0 %)

Scaling Objectives and Approaches

- Combustor characterization is goal
 - Validation data for design analysis models
 - Assess innovative functional design, materials, operation
 - Investigations into specific physics
- Single element, multi-element, 40K, 250K
- Cold flow and hot fire
- Performance, heat transfer, life, stability
- Experimental objective needs to define scaling approach and measurement
 - Well-instrumented combustors linked to analysis
 - Thrust level and number of elements
 - Element scaling and configuration

Hierarchy of injector experiments



degree of simulation

Brief History of Scaling in the US – Steady State Combustion

- JPL studies of mixing efficiencies of impinging jets
- Bell Aerospace/AFRL holographic and shadowgraphic studies of combusting flows
- Rocketdyne development of LISP methodology for SDER
- Aerometrics development of PDPA
- Rocketdyne studies of flameholding behind LOX post
- PSU measurements of chemical species in HO combustors
- AFRL studies of supercritical jets

Single Element Test Chamber

Stability Scaling

- Simulation of chamber dynamics in subscale configuration is very difficult
 - Acoustic frequencies scale as ~ 1/d
 - Pressure v velocity sensitivity
- Scaling approaches
 - Wedges, T-burners, 2-d chambers
 - -1T = 3T scaling
- Single element rarely used in US, but is more typical in Russia

Experimental Approach of Bazarov

This facility screened Injector elements for Liq/liq and gas/liq Injectors for over 20 Years (1965-85)

Typical Pc = 750 psi, Total flowrate of 5 lb/s

'self-oscillation' and response to pulsations measured

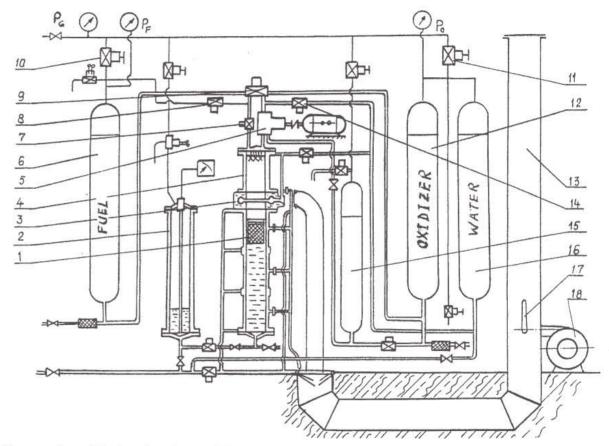


Fig.8 Pneumatic and hydroulic scheme of fire stand 1-piston, 2-measuring vessel, 3-nozzle collector, 4-combustion chamber, 5-pulsator, 6-fuel tank, 7-time delay valve, 8-blow through valve, 9-main bi-propellant valve, 10,11-pressurising gas reductors, 12-oxidizer tank, 13-exhaust tubes, 14-water valve, 15-oxidizer return tank, 16-pressurised water tank, 17-ejector, 18-air compressor

Experimental Approach of NIICHIMMASH

- Use full-scale injector elements
- Experiment designed to simulate controlling processcooling water
 mixing
- Match equivalence ratio and volumetric flowrates using diluted gaseous propellants
- Combustor acoustics matched by using appropriately sized lowpressure chamber
- Stability boundaries determined by varying flowrates
- Relative boundaries indicate stability ranking

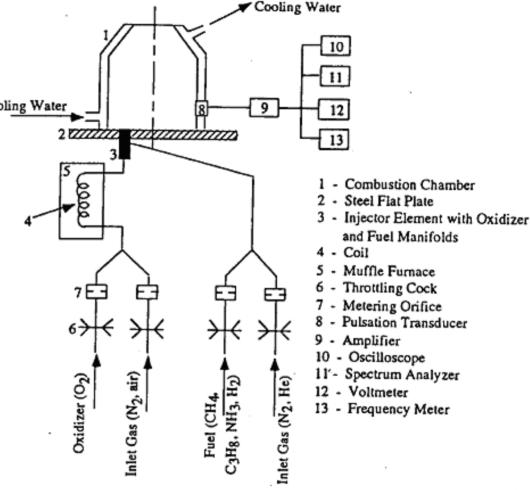
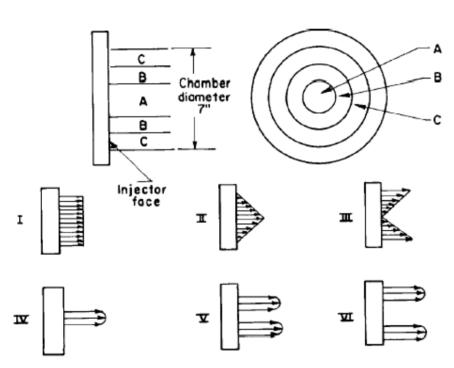


Figure 6. Schematic of Single Element Model Set-up and Instrumentation

Propellant Distribution Effects



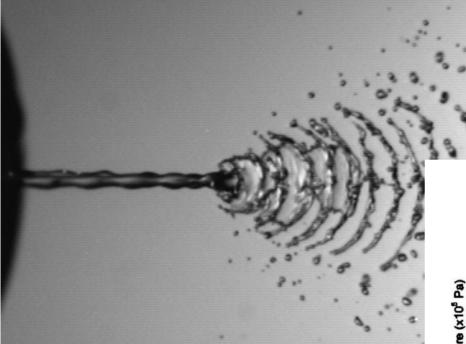
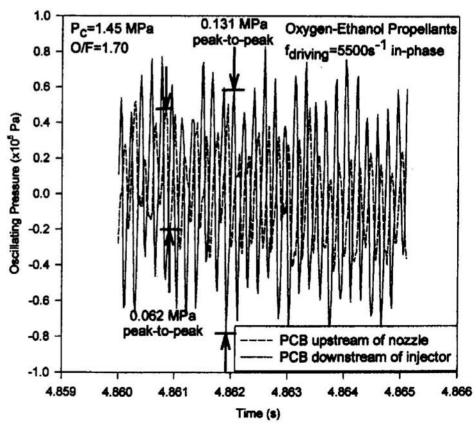
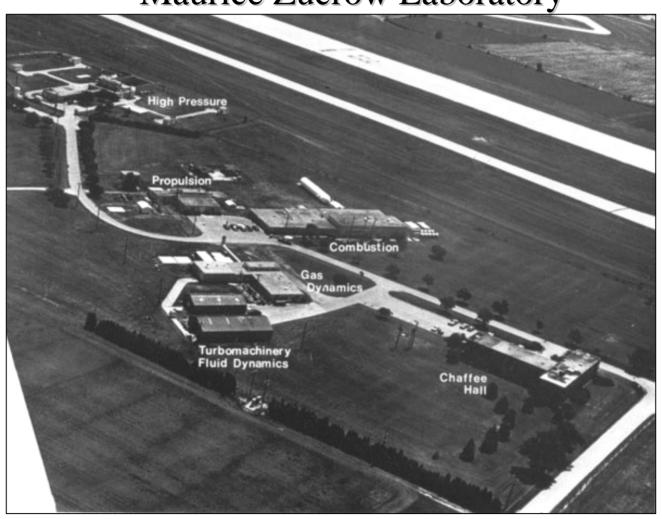

Figure 7.2.5a.—Injection radial profile comparison.

Table 7.2.5a.—Gas Rocket Test History With Various Injection Profiles

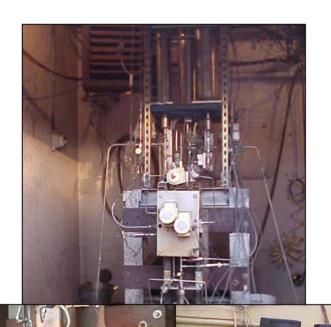
[Instabilities initiated spontaneously and linearly; mean chamber pressure, 150 psia; combustion chamber diameter, 7 in.; combustion chamber length, 6 in.]


Profile	Amplitude, psi	Mode
I	7	1st tangential
II	0 11	Stable 1st tangential
ıv	13	1st radial
V	0	Stable

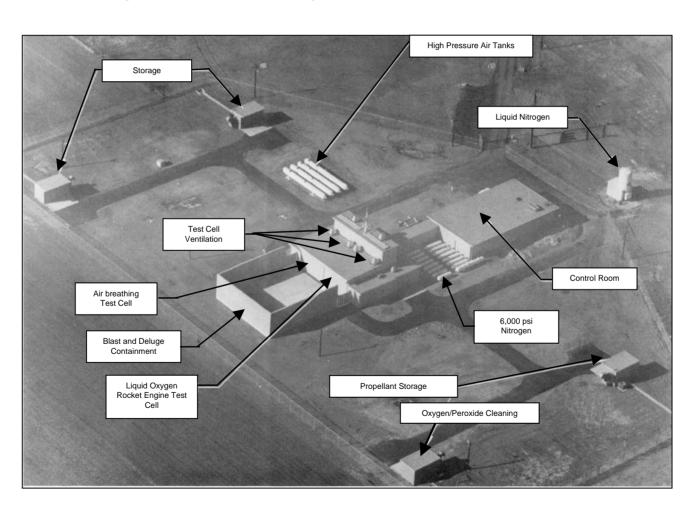
Single Element 'Instability'



Impinging jets driven by piezoelectric actuator


Combustor oscillations at driven atomization frequency

Subscale Test Activities at Purdue - Maurice Zucrow Laboratory


Advanced Propellants and Combustion Lab

- Two cells w/ 1 Klbf thrust stands
- Propellant supply of 1800 psia
- 2 4 gallon oxidizer tanks
- 1 & 4 gallon fuel tanks
- National Instruments hardware & LabView software
 - 32 channels pressure
 - 32 channels temperature
 - •All valves computer controlled
 - •Rapid test article installation
 - •Design/Build/Test course

High Pressure Lab

Renovation funded thru Indiana 21st Century R & T Fund – Propulsion and Power Center of Excellence Facility activated in May '03

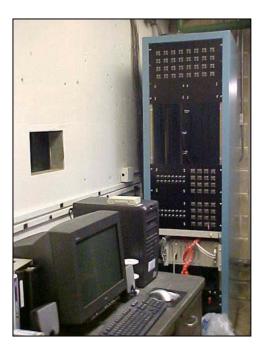
6,000 psi Nitrogen System

- Pressurization, Actuation and Purge Gas
- 2,400 gallon Liquid Nitrogen Tank w/ 6,000 psi Pump
- 253 ft³ 6,000 psi Nitrogen Tube Trailer
- Computer Controlled Pressurization Systems

Propellant/Coolant Tanks

- 22 gal 5,000 psi LOx
- 16 gal 5,000 psi Fuel
- 220 gal 5,000 psi H₂O
- 400 gal 800 psi H₂O₂
- Hydraulic Control Valves

10,000 lbf Thrust Test Cell



- LabView 6.1-based DACS
- 10,000 lbf thrust measurement
- 64 channels pressure
- 96 channels thermocouples
- 18 channels analog control
- 32 channels on/off control

Control System Operation

- Data System Located Adjacent to Test Cell
- Operation Remoted to Control Room (KVM Extender) for Testing
- Video Recorded Directly to DVD

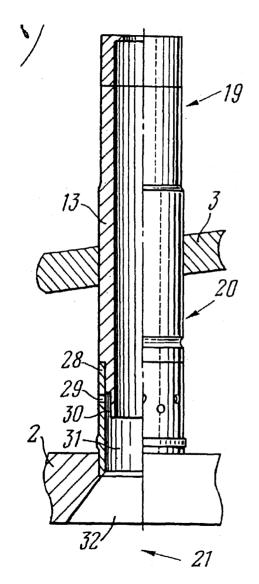
Test Cells

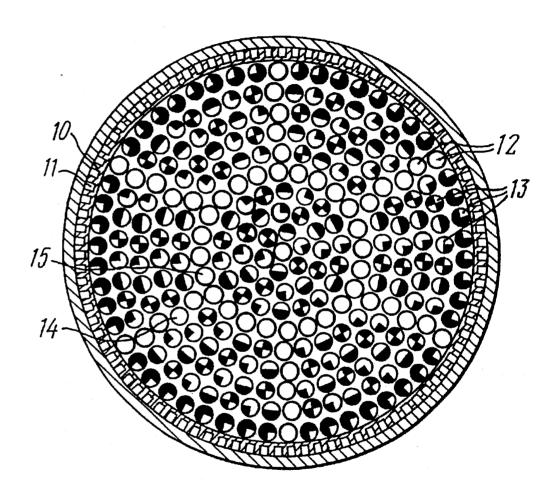
- 18" Thick Reinforced Concrete Test Cell Walls
- High Flow Capacity Test Cell Exhaust Fans
- Heated High Pressure Air Plumbed to Both Cells
- Walled Containment Area

Injector Characterization Scaling Approach

Study Objectives

-Steady state and dynamic characterization of ORSC MC injector elements

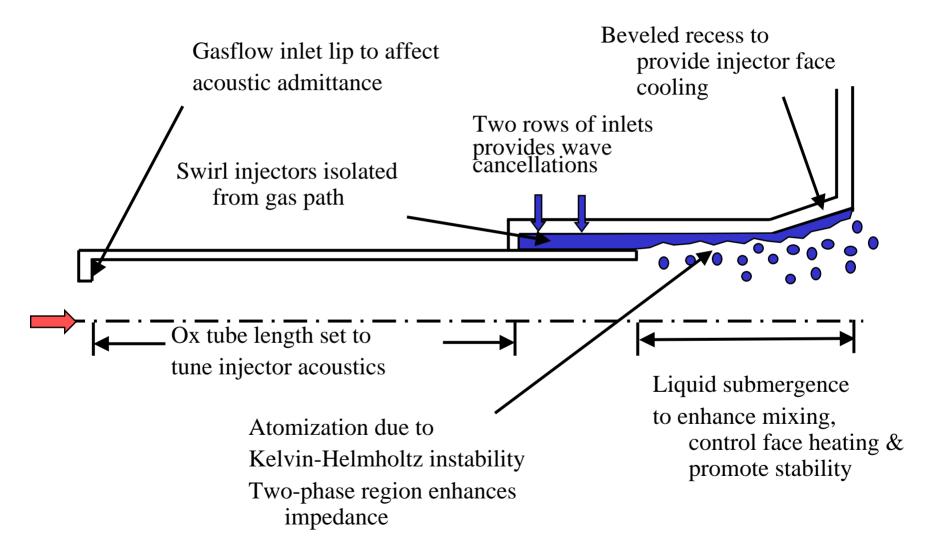

Approach


- -Investigate full-scale elements at realistic operating conditions
- -No film cooling (if possible)
- -Evaluate different injector design configurations
- -Couple with analysis

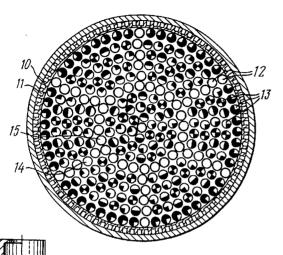
•Measurements

- -Energy release profile from axial pressure gradient
- -Injector face and chamber wall thermal environments
- -Plume signature with IR tomography
- -Manifold, injector and chamber p'

ORSC Main Combustor Components



271 elements, 1722 lb_f each, d = 0.5 in



Principle Design Features

Single Element Sizing Exercise

Approach

• use full scale F/element (1722 lb_{fvac})

$$mox = 3.6 \text{ lb/s}, mf = 1.2 \text{ lb/s}$$

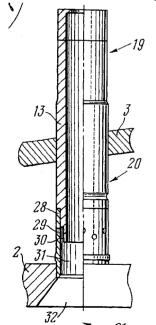
• test at 'full' Pc (2250 psia)

At =
$$0.39 \text{ in}^2$$
, dt = 0.70 in

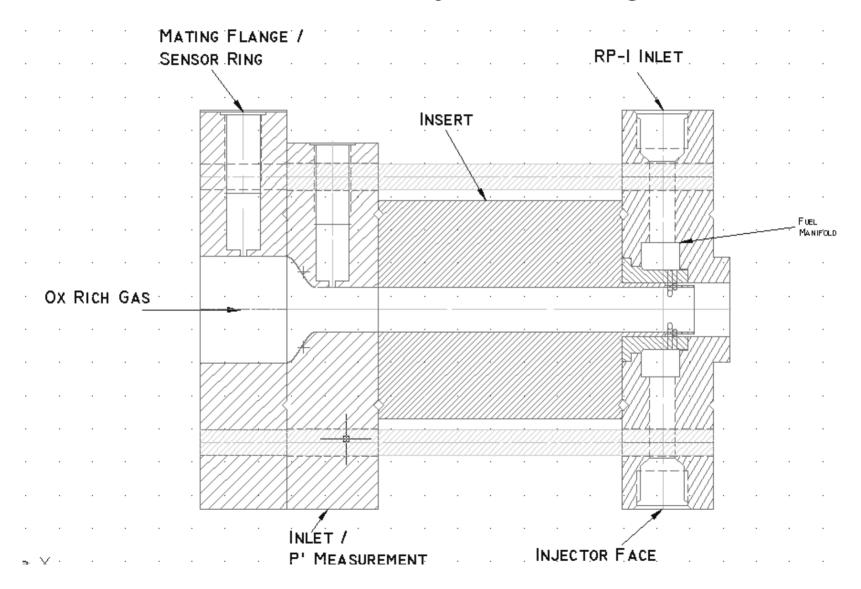
• match injection pressure drops (10%)

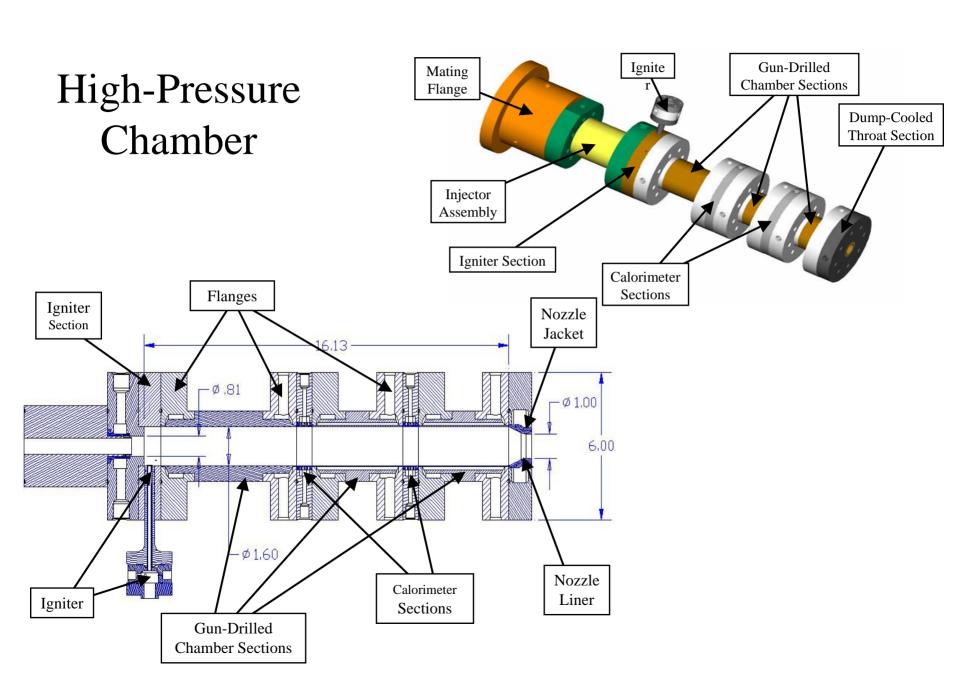
Possible scaling methods:

Contraction ratio (1.61) \implies dc = 0.89 in

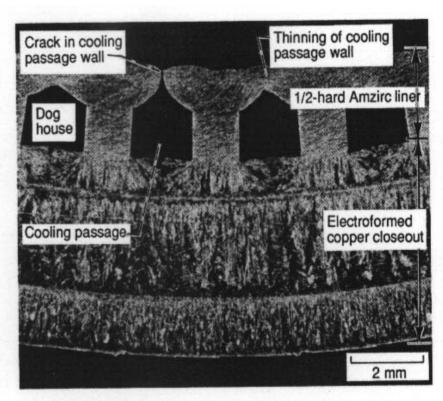

Element to chamber area ratio $(0.30) \longrightarrow dc = 1.04$ in

Element-element spacing $(0.60d) \implies dc = 0.91$ in

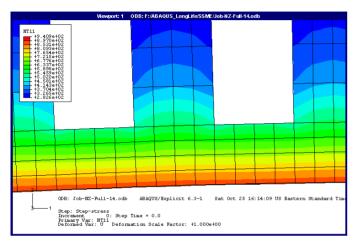

Element-wall spacing (0.60d?) \implies dc = 0.91 in

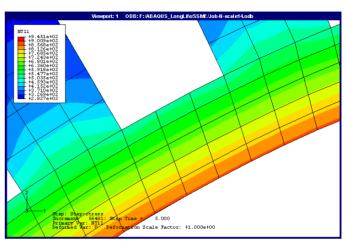

Element area (0.65 in^2) \implies dc = 0.91 in

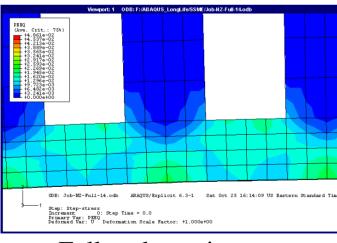
Chamber length based on $L^* \sim 30$ in (??)


Baseline Injector Design

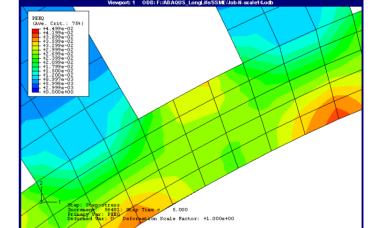
Life Prediction - Background


- Rocket combustor liner such as SSME operated at high temperature (6000F) and pressure (3000 psi) ranges as well as extreme heat flux (80 Btu/in²-s) requires active cooling devices to prevent material failure.
- Combustor liner experiences high thermal structural stress (~100 MPa) during mission profile (SSME 8 min)
- Experiments by Quentmeyer and Jankovsky showed bulging and thinning of liner due to cyclic loading
- Kasper and Porowski developed analytical life prediction methods using simple fatigue and creep model
- Robinson, Arnold and Freed developed visco-plastic model for fatigue-creep interaction phenomena which is believed to be a main failure mechanism


Typical failure mode of combustor liner at throat so called "dog house effect" per Quentmeyer

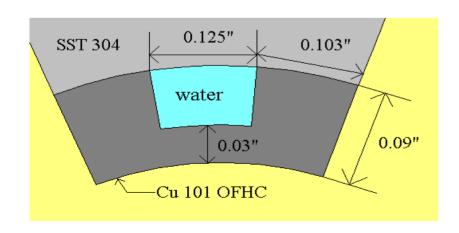

Full Scale – Subscale Life Comparison

- Pc = 3300 psi, Tc = 3500 K



Т

Full scale engine Strain_max = 2.4 Life = 120


1/10 scale model
Strain_max = 3.94
Life = 48

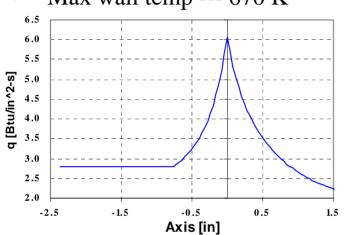
Approach

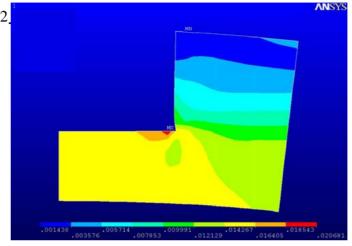
- Develop DBT course with life prediction as part of AAE curriculum
- Develop design requirements
 - Controlled hot-gas environments use 'pre-combustor'
 - Creep-fatigue interaction failure of cooled liner
 - Failure within reasonable number of cycles
- Life prediction analysis using conventional methods
 - Chemical equilibrium in pre-combustor
 - One-dimensional heat transfer analysis for initial design
 - critical heat flux and cooling requirements, duty cycle
 - FEM for stress and plastic strain
 - Strain-life curves for cycle life
 - More advanced life modeling by graduate student following project
- Cyclic testing of test article
 - Ten cycles per test
 - Validation of cooling analysis
 - Regular inspection
- Test-to-failure

Combustor Design Parameters

- Top level requirements
 - Less than 200 life cycle
 - Test should produce verifiable results
 - Liner has no melting prior to the LCF failure
 - All parts had to be manufactured in ASL at Purdue
- Under these requirements, the coolant pressure, flow rate and cooling channel aspect ratio (0.5) were determined.

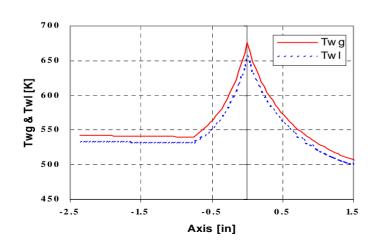
Parameter	Value	
Propellant	90% H ₂ O ₂ + JP-8	
Propellant mixture ratio (O/F)	4.0	
Propellant flow rate	1.25 lb/s	
Chamber pressure (P _c)	200 psia	
Chamber temperature (T _c)	3440 °F	
Characteristic velocity (C*)	4961 ft/s	
Throat area (A _t)	0.915 in ²	
Characteristic length (L*)	70	
Test liner diameter	2.0 in	
Test liner length	5.0 in	
No. of cooling channel	30	
P _{coolant}	110 psi	
M_dot _{coolant}	0.8 lb/s	

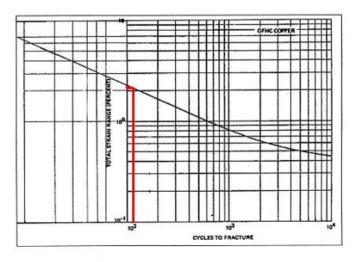

Table 1 : Combustor design parameters


Thermal Structural Prediction

Thermal analysis

• Burn out heat flux --- 6.54 Btu/in²

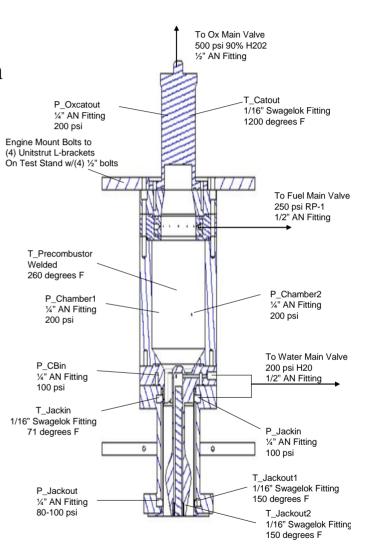

• Max wall temp --- 670 K



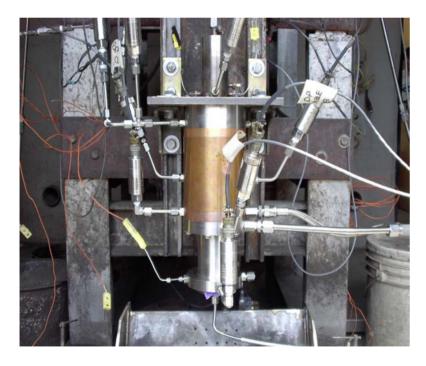
Total strain predicted by ANSYS around rectangular cooling channel.
-Total strain --- 2.0 %

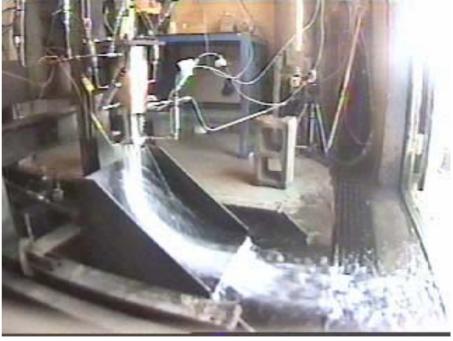
-Total strain --- 2.0 %
-Life expected --- 115
cycles

Strain-life curve for OFHC at 810 K from NASA CR-134806, 1975


Test Article

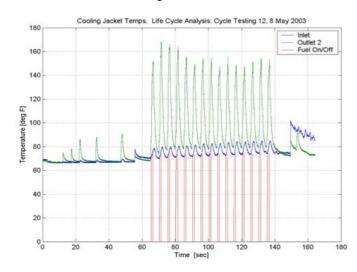
- Catalyst bed for decomposing H₂O₂
- Heat sink dump combustor for hot gas generation
- Chamber liner --- water cooling
- Center body --- water cooling with TBC (0.01" thick)



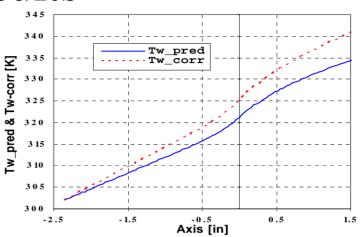


Testing

- Tests were conducted in the APCL at Purdue University
- Propellant flow timing sequence was automatically controlled by pneumatically actuated valve with LABVIEW system



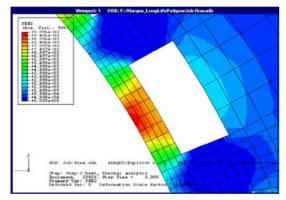
Test article assembly on test stand

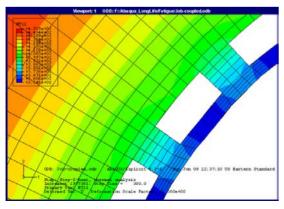

Cyclic test

Test Results

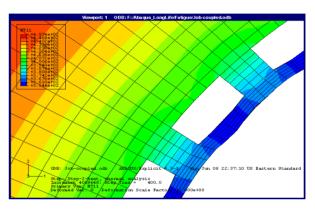
- Chamber pressure, C* efficiency, propellant mass flow rate, coolant temperature and pressure were measured and calculated
- Data reduction was performed using in-house code written by students using MATLAB
- Validation procedure
 - Measure coolant ΔT , wall thinning rate
 - 2.15E-5 in/cycle (0.032"→0.029")
 - Verify 1D thermal model
 - Compute updated thermo-structural environment
 - Make life prediction

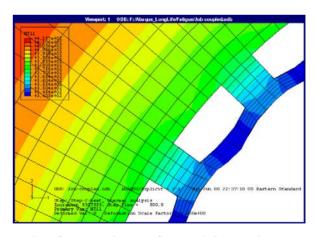
Coolant temperature


Predicted and measured coolant temperature $\Delta T = 4.0 K$ at throat


Discoloration and deformation at 90 cycles $(1.5"\times0.6")$

Updated Structural Analysis


- Simulation of temperature, strain and deformation (bulging, thinning) using ABAQUS explicit module
- Maximum strain: 1.2 % at middle of ligament
- Only bulging of ligament was simulated


Plastic strain distribution

Deformation after 60 cycle

Deformation after 80 cycle

Deformation after 100 cycle

Summary and Conclusions

- Small-scale rocket combustor was designed and tested to verify life prediction models for low cycle fatigue and fatigue-creep interaction.
- Several life prediction methods were applied to predict combustor life and were compared with test results.
- Correlation data used to improve predictions.
- Improvements would include fixing the liner lands to the structural jacket, and testing at more severe conditions.

Prediction method	Estimated life cycle	Determined life cycle by experiment
Effective stress-strain	115	
ANSYS	115	
Porowski	51	270
Dai and Ray with Freed model	260	
ABAQUS	320	

Comparison of life prediction with test

Summary and Conclusions

- 100's of cycle goal is very challenging and verification would be very expensive
 - Question of economic feasibility
- Improved life prediction methodology for expanding range of design and operational scenarios is needed
 - Probabilistic life prediction design analysis
 - Testing methodologies with *in situ* thermostructural response measurements
 - Environments definition
 - Improved material database and understanding of damage mechanisms

Acknowledgements

- Work sponsored under NAG8-1856, -1876, -1894
 - Huu Trinh, Robert Williams, and Terri Tramel COTR's
- Professor Steve Heister and senior engineer Scott Meyer
- Machinists Madeline Chadwell and Jerry Hahn
- Students of AAE 590
- School of Aeronautics and Astronautics